Резистентность к антибиотикам (причины, механизмы, пути преодоления).

Резистентность к антибиотикам Антибиотики используются в клинической практике более 70 лет. Благодаря их применению было спасено миллионы людей. Несмотря на это, и сегодня в XXI веке смертность от инфекционных заболеваний остается высокой. Причиной этому является развитие устойчивости (резистентности) к антибиотикам.


Резистентность к антибиотикам бывает:

  • Природной.
    Когда в микроорганизме отсутствует мишень для действия антибиотика или она недоступна.
    Примеры:
    — β-лактамные антибиотики не действуют на микоплазмы. Мишенью β-лактамов являются ферменты локализованные в стенках бактериальных клеток, которые отсутствуют у микоплазм (у них нет клеточных стенок). Поэтому Mycoplasma spp. имеет природную устойчивостью к β-лактамам;
    — У большинства грамотрицательных бактерий клеточная стенка непроницаема для макролидов, поэтому они обладают природной устойчивостью к этому классу антибиотиков.

Приобретенной.
Эта устойчивость развивается вследствие мутаций микроорганизмов либо при передаче генов от резистентных бактерий к чувствительным бактериям.

Мутации бактериальных клеток приводят к спонтанному появлению резистентных бактериальных клеток. При применении антибиотиков происходит уничтожение чувствительных бактериальных клеток и размножение устойчивых бактерий.
Вследствие этого может образоваться популяция состоящая целиком из резистентных микроорганизмов.

Основным источником генетической информации в бактериальной клетке является хромосома, которая в большинстве случаев образована единственной замкнутой циркуляторной молекулой ДНК. Содержащие в ней гены обеспечивают жизнедеятельность бактерии практически в любых обстоятельствах.

В тоже время, во многих (возможно, что и во всех) бактериях имеются дополнительные молекулы ДНК, получившие название плазмид. По размеру они меньше хромосомной ДНК, не связаны с ней и обычно воспроизводятся отдельно от нее. Гены, которые переносятся плазмидами, чаще всего не являются жизненно необходимыми для выживания бактерий в обыкновенных условиях, но могут придавать клеткам-носителям преимущества в борьбе за существование в некоторых особых обстоятельствах.

Полезные свойства, которые передаются плазмидами, включают в себя:

  • Фертильность: способность к конъюгации и передаче генетической информации другим бактериям;
  • Резистентность к антибиотикам: большинство случаев устойчивости к антибиотикам, которые встречаются в клинических условиях, опосредованы плазмидами;
  • Способность к выработке бактериоцинов – белков, ингибирующих другие бактерии, которые являются экологическими конкурентами данного микроорганизма;
  • Выработку токсинов;
  • Иммунитет к некоторым бактериофагам;
  • Способность использовать необычные сахара и другие субстраты в качестве продуктов питания.

Плазмиды различаются по своим размерам, составу и совместимости. Совместимые плазмиды могут сосуществовать в одной и той же бактерии-хозяине, в то время как несовместимые – нет.

Третьим источником генетической информации в бактериальной клетке являются бактериофаги (или просто – фаги). Бактериофаги – это вирусы, инфицирующие бактерии. Большинство фагов способно атаковать сравнительно небольшое число штаммов определенных бактерий, то есть имеет узкий и весьма специфический круг потенциальных жертв.

Различают две основные группы фагов:

  • Вирулентные фаги, которые неминуемо уничтожают любую инфицированную ими бактерию, в результате из каждой лизированной клетки высвобождается ряд новых частичек фагов;
  • Умеренные (лизогенетические) фаги, которые могут либо лизировать, либо лизогенировать инфицированные бактериальные клетки.
    При лизогении геномы бактерий и умеренного фага сосуществуют в виде единой хромосомы, в которой ДНК хромосомы бактерии и передается по наследству дочерним клеткам. Такой «спящий» фаг получил название профага.
    Тем не менее, на этой стадии некоторые гены профага могут экспрессироваться и придавать новые свойства (в частности, резистентность к антибиотикам) клетке-хозяину. На определенном этапе (во время одного из каждых несколько тысяч делений бактерии) профаг вступает в литический цикл с последующим разрушением бактерии-хозяина и высвобождением новых фаговых частичек в окружающую среду.

Передача генов, кодирующих резистентность, от резистентных бактерий чувствительным микроорганизмам, является более эффективным механизмом приобретения резистентности.

Такая передача осуществляется тремя путями:

  • При трансформации свободная ДНК погибшей антибиотикорезистентной бактериальной клетки захватывается из окружающей среды антибиотикочувствительной бактерией-реципиентом;
  • Трансдукция включает в себя случайную инкорпорацию бактериальной ДНК частичкой бактериофага во время литического цикла фага. При этом ДНК может быть как хромосомной, так и плазмидной. В последующем частичка фага переносит бактериальную ДНК в следующую клетку, которая она инфицирует;
  •  Коньюгация предполагает физический контакт между двумя бактериями.
    В то время, когда два микроорганизма прикрепляются один к другому, происходит односторонняя передача ДНК от клетки-донора клетке реципиенту. Способность к конъюгации зависит от соответствующих плазмид или транспозонов в клетке-доноре.

Наличие перечисленных механизмов передачи генетической информации означает, что не только мутации и селекция определяют эволюцию бактерий. Например, ранее чувствительная к антибиотикам бактерия может при конъюгации приобрести плазмиду, содержащую гены, кодирующие резистентность к нескольким различным антибиотикам. В результате в течение короткого промежутка времени в данной экологической нише может сформироваться пул полирезистентных микроорганизмов.

Основные механизмы, с помощью которых развивается приобретенная устойчивость к антибиотикам:

  •  Разрушение или модификация антибиотика;
  • Меняется мишень для действия антибиотика;
  • Уменьшается проницаемость клеточной стеки для антибиотика;
  • Активное выведение антибиотика из бактериальной клетки;
  • Приобретается новый метаболический путь, на который не влияет антибиотик.

Наиболее важным из этих механизмов является разрушение антибиотика бактериальными клетками (микроорганизмы способны выделять ферменты разрушающие антибиотик). Пример этому служит развитие резистентности к β-лактамным антибиотикам, широко применяемым в клинической практике.

Бактериальные ферменты, разрушающие β-лактамазные антибиотики, получили название β-лактамаз. В связи со способностью гидролиза тех или иных β-лактамных антибиотиков различают пенициллиназы, цефолоспориназы, карбапенемазы и т. д.

Если гены, кодирующие выработку β-лактамаз, находятся в хромосомах, то начинают распространяться резистентные клоны бактерий.
Плазмидная локализация генов, кодирующих выработку β-лактамаз, обуславливает быстрое внутри и межвидовое распространение резистентности.

Практически все грамотрицательные бактерии вырабатывают β-лактамазы (гены локализуются в хромосомах). Опосредованные плазмидами β-лактамазы широко распространены не только среди грамотрицательных микроорганизмов, но и у стафилококков.

Синтезируемые бактериями β-лактамазы могут быть чувствительными и нечувствительными к ингибиторам β-лактамаз .
Ингибиторы β-лактамаз это вещества, которые связываются с β-лактамазами и подавляют их активность.
Плазмидные β-лактамазы грамотрицательных бактерий чувствительны к ингибиторам, а хромосомные, — как правило нет. Некоторые хромосомные β-лактамазы грамотрицательных бактерий эффективно гидролизуют практически все β-лактамные антибиотики, включая карбапенемы.

Также бактериальные клетки могут выделять ферменты модифицирующие антибиотик. В результате этого антибиотик утрачивает возможность связываться со своими мишенями в бактериальной клетке и теряет свою эффективность. Примером служит развитие резистентности к аминогликозидам у грамотрицательных бактерий семейства Enterobacteriacea, когда антибиотики инактивируются в результате ацетилирования, аденилирования или фосфорилирования.

Резистентность может развиваться, когда изменяется мишень для действия антибиотика. Примером этого вида устойчивости может быть резистентность S.pneumoniae к пенициллину.

Существует механизм резистентности, когда антибиотик активно удаляется (выкачивается) с клетки с помощью насосов. Примером служит приобретение устойчивости к тетрациклинам. Тетрациклины, попадая вовнутрь клетки, изгоняются из нее наружу и не успевают связаться со своими мишенями (рибосомами).

Классическим образцом резистентности, опосредованной действием подобных насосов, является разветвленная перекрестная устойчивость некоторых штаммов Pseudomonas auruginosa к β-лактамам, фторхинолонам, тетрациклинам и хлорамфениколу.
Долгое время она приписывалась нарушению проницаемости бактерий для этих антимикробных препаратов. В настоящее время установлено, что она связана с оператором MexAmexBopr M, кодирующим систему изгнания указанных антибиотиков из микробной клетки. Если инактивировать эту систему, то синегнойные палочки становятся высокочувствительными ко всем перечисленным препаратам.

Резистентность может развиваться при нарушении проницаемости бактерий для антибиотиков. Например β-лактамные антибиотики проникают в грамотрицательные бактерии через поры посредством диффузии. Уменьшение числа или радиуса пор приводит к снижению чувствительности бактерий к этим антибиотикам.

Также резистентность может возникнуть, если у бактерий сформируется новый метаболический путь, на который не влияет антибиотик. Например, S. аureus способен образовать дополнительный белок, который полноценно синтезирует клеточную стенку стафилококка и вызывает устойчивость к антистафилококковым пенициллинам (оксациллину и метициллину и), и ко всем β-лактамным антибиотикам.

Описанные механизмы отнюдь не исчерпывают тему приобретения и передачи антибиотикорезистентности. Они дают лишь некоторое представление о способности мира микробов приспосабливаться к изменившимся условиям внешней среды и, прежде всего, — к применению антибиотиков.

Рекомендации по применению антибактериальной терапии для различных инфекций опираются на результатах микробиологических исследований. Такие исследования дают возможность отслеживать чувствительность антибиотиков к ключевым возбудителям заболевания, отслеживать динамику изменения чувствительности, вносить коррективы в стандарты лечения.

На практике различают резистентность возбудителей внебольничных и госпитальных инфекций. При небольшом уровне резистентности эффективность антибактериальной терапии не снижается. Однако лечение становится неэффективным при превышении определенного порогового уровня. Для внебольничных пневмококков пороговый уровень примерно 20-30% резистентных штаммов.

Для госпитальных возбудителей, в результате более широкого применения антибиотиков, формируются высокорезистентные штаммы, которые нередко устойчивы к антибиотикам нескольких классов.
Выраженность и характер резистентности зависит от профиля отделения и традиций использования антибиотиков в конкретном отделении больницы. При этом резистентность будет отличаться не только в разных стационарах, но и в разных отделениях одной и той же больницы.
Поэтому выработка универсальных рекомендаций по терапии госпитальных инфекций вряд ли возможна и должна строиться с учетом микробиологического мониторинга за ситуацией, сложившейся в конкретном отделении.

Распространению резистентных бактерий во многом способствует неадекватное применение антибиотиков в медицине.

Неадекватное использование антибиотиков может быть связано как:

  • С действием врача. Назначение этих медикаментов при вирусных инфекциях и лихорадочных состояниях неинфекционной природы, нерациональная антибиотикотерапия (по длительности, дозировкам, кратности введения, выбору конкретного препарата и т. д.).
  • С действием пациента (несоблюдение полного курса антибиотикотерапии, самолечение остатками не употребленных лекарств и т.д.).

Однако антибиотики используют не только в медицине. Широкое применение они нашли в сельском хозяйстве и животноводстве, причем не только для лечения и профилактики инфекций, но и в качестве стимуляторов роста (животноводство). В последнем случае они обычно назначаются в субтерапевтических дозах. Несомненно, подобное применение – прямая дорога к возникновению и распространению резистентных бактерий.

Серьезную проблему представляет использование антибиотиков и в сельском хозяйстве при обработке антибиотиками больших площадей занятых сельскохозяйственными растениями с применением авиации и других технических средств. Дальнейшее их распространение происходит как среди обслуживающего персонала, так и через пищевую цепочку.

Сложность и многообразие механизмов устойчивости бактерий к антибиотикам стимулировали разработку различных мер по ограничению распространения и преодолению резистентности.

Перспективными подходами к преодолению резистентности являются:

  • Защита известных антибиотиков от разрушения ферментами бактерий или от удаления их из бактериальной клетки посредством мембранных насосов;
  • Применение иных антибиотиков выбранной группы. Например, уровень устойчивости большинства возбудителей госпитальных инфекций к гентамицину в несколько раз выше, чем к другому аминогликозиду антибиотику – амикацину;
  • Применение комбинации антибиотиков;
  • Проведение целевой и узконаправленной антибактериальной терапии;
  • Синтез новых соединений, относящихся к известным классам антибиотиков;
  • Поиск принципиально новых классов антибактериальных препаратов.

Михаил Любко

Литература: Инфекции и антибиотики  И. Г. Березняков. 2004 год. Харьков.

Навигация по записям:


Архив комментариев

Резистентность к антибиотикам (причины, механизмы, пути преодоления). — 1 комментарий

  1. Вот ведь как всё устроено интересно в природе: даже бактерии могут проявлять устойчивость к антибиотикам.
    И врачам нужно найти такие лекарства, чтобы всё же помочь вылечить человека.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *